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Abstract

The ruthenium(II) bis(acetate) complex Ru(CO)2(OAc)2(PnBu3)(PPh3) (OAc = acetate) containing two different trans phosphine
ligands, has been employed as pre-catalyst for the chemoselective hydrogenation of a,b-unsaturated ketones to allylic alcohols. Analo-
gous catalytic reactions with the homodiphosphine pre-catalysts Ru(CO)2(OAc)2(PnBu3)2 and Ru(CO)2(OAc)2(PPh3)2 gave lower con-
versions and selectivities. Batch catalytic reactions and operando high-pressure NMR experiments have contributed to establish that the
hydrogenation of the C@O group is performed by the heterodiphosphine monohydride RuH(CO)2(OAc)(PnBu3)(PPh3) generated in situ

by hydrogenation of the bis(OAc) precursor. PPh3 unfastening from this monohydride complex is an essential condition for the occur-
rence of catalytic activity.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In a recent work, we have examined the catalytic activity
of ruthenium(II) bis(acetate) complexes of the formula
Ru(CO)2(OAc)2(PnBu3)[P(p-XC6H4)3] in the hydrogena-
tion of alkenes and ketones [1]. These complexes contain
a PnBu3 ligand in trans position to triarylphosphines bear-
ing different substituents in the para position of the aro-
matic ring (X = CH3O, CH3, H, F, Cl) [2]. Due to an
effective trans effect [3] caused by the greater basicity of
PnBu3 as compared to any other trans triarylphosphine
investigated, the latter is kinetically labile with formation
0022-328X/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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of a free coordination site suitable for H2 activation and
substrate coordination [1,2].

As shown in Scheme 1, the hydrogenation of
Ru(CO)2(OAc)2(PnBu3)[P(p-XC6H4)3] in benzene gives
either monohydride or dihydride species with rates of for-
mation and relative concentrations that depend on the
basicity of the triarylphosphine. Notably, acetates, mono-
and dihydrides are in equilibrium with each other under
hydrogenation conditions unless acetic acid is removed
by treatment of the reaction mixture with an appropriate
base such as Na2CO3 [4].

Determining what ruthenium(II) species is prevalently
formed under catalytic conditions turned out to be of cru-
cial importance for driving both substrate conversion and
selectivity. Indeed, alkene hydrogenation was found to
preferentially involve dihydride catalysts, whereas ketone
hydrogenation was best accomplished by monohydride cat-
alysts [1]. This structure-chemoselectivity relationship is
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Fig. 1. ORTEP drawing of Ru(CO)2(OAc)2(PnBu3)(PPh3). Thermal
ellipsoids are drawn at the 30% probability level. Hydrogen atoms are
omitted for clarity.
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shown in Scheme 2 for the complex Ru(CO)2(OAc)2

(PnBu3)(PPh3) (1), which was selected to carry out a preli-
minary study of the hydrogenation of an a,b-unsaturated
ketone, namely trans-4-phenyl-3-buten-2-one (BZA) [1].

Under the experimental conditions employed to reduce
alkenes and ketones, a rather low turn-over-frequency was
observed (8.3 mol BZA converted (mol cat · h)�1), but the
selectivity in the corresponding allylic alcohol, trans-4-phe-
nyl-3-buten-2-ol, was quite good (>91%). This finding was
rather surprising as very few ruthenium complexes are
known to catalyze the hydrogenation of a,b-unsaturated
ketones with such a high chemoselectivity in allylic alcohol
(>90%) [5]. Therefore, we decided to explore in a deeper
way the ability of 1 to catalyze the hydrogenation of a,b-
unsaturated ketones. The results of this study are reported
in this paper, together with a crystallographic analysis of
the catalyst precursor 1 as well as an operando high-pressure
NMR investigation of selected catalytic reactions.
2. Results

2.1. Crystal structure determination of Ru(CO)2(OAc)2-

(PnBu3)(PPh3)

Suitable crystals of compound 1 were obtained by slow
evaporation of a saturated n-hexane solution of the com-
plex at room temperature. An ORTEP drawing of the
molecular structure is presented in Fig. 1. Both, crystallo-
graphic data and selected geometrical parameters of com-
pound 1 are given in Tables 1 and 2, respectively.

The ruthenium centre in 1 is octahedrally coordinated by
two cis CO groups and two acetate ligands in the equatorial
plane, while the apical positions of the octahedron are occu-
pied by the phosphines. The deviation of the metal centre
from the equatorial coordination plane, defined by the
atoms O(3), O(5), C(31) and C(32) is of 0.0271(22) Å

´
in

direction of P(1). The difference of the Ru(1)–P bond lengths
with the Ru–PPh3 distance of 2.432(1) Å

´
and the Ru–PnBu3



Table 1
Crystallographic data for 1

Molecular formula C36H48O6P2Ru
Formula weight (g mol�1) 739.75
Crystal colour, shape White, prism
Crystal dimensions (mm) 0.50 · 0.50 · 0.20
T (K) 294(1)
Crystal system Monoclinic
Space group P21/n
a (Å) 11.060(5)
b (Å) 29.674(5)
c (Å) 11.885(5)
a (�) 90.000
b (�) 98.145(5)
c (�) 90.000
V (Å3) 3861(2)
Z 4
F(000) 1544
q (calc.) (g cm�3) 1.273
k(Mo Ka) (Å) 0.71072
l (mm�1) 0.528
h Range (�) 2.7–25.0
Index ranges �13 6 h 613

0 6 k 6 35
0 6 l 6 14

Number of collected reflections 6752
Number of independent reflections 6752
Number of data/restrains/parameters 6752/3/411
Refinement method Full-matrix least-squares on

F2

GOF on F2 1.032
Final R1, wR2 indices [I > 2r(I)] 0.0508, 0.1087
Final R1, wR2 indices (all data) 0.1181, 0.1291
Peak, hole in final difference map (e Å�3) 0.069, �0.483

Table 2
Selected geometrical parameters for 1

Bond lengths (Å
´

) Bond angles (�)

Ru(1)–P(1) 2.432(1) P(1)–Ru(1)–P(2) 172.68(5)
Ru(1)–P(2) 2.381(1) O(3)–Ru(1)–O(5) 81.76(13)
Ru(1)–O(3) 2.076(3) C(31)–Ru(1)–C(32) 87.30(20)
Ru(1)–O(5) 2.103(3) P(1)–Ru(1)–O(3) 89.00(9)
Ru(1)–C(31) 1.873(6) P(1)–Ru(1)–O(5) 84.31(10)
Ru(1)–C(32) 1.852(6) P(1)–Ru(1)–C(31) 96.18(16)
C(31)–O(1) 1.145(6) P(1)–Ru(1)–C(32) 93.33(16)
C(32)–O(2) 1.151(6) P(2)–Ru(1)–O(3) 84.82(9)

P(2)–Ru(1)–O(5) 90.91(10)
P(2)–Ru(1)–C(31) 88.29(16)
P(2)–Ru(1)–C(32) 92.67(16)
Ru(1)–C(31)–O(1) 172.20(50)
Ru(1)–C(32)–O(2) 174.40(50)
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distance of 2.381(1) Å
´

, reflects the trans influence exerted by
PnBu3. Notably, the Ru–P(PPh3) distance found in 1 is sig-
nificantly elongated compared to analogous complexes
exhibiting a trans Ru(PPh3)2 moiety, which show Ru–P

distances ranging between 2.411(1) and 2.425(1) Å
´

[6].

2.2. Hydrogenation of a,b-unsaturated ketones catalyzed by 1

The a,b-unsaturated ketones scrutinized in this work are
shown in Scheme 3. The hydrogenation reactions were ini-
tially carried out in toluene at 60 �C under 25 bar H2 with a
substrate to pre-catalyst ratio of 100.

Conversions and chemoselectivities for reactions lasting
3 h are reported in Table 3. This preliminary screening
showed cyclohex-2-en-1-one and 3-methyl cyclohexen-1-
one as the substrates showing the highest chemoselectivity.
Therefore, cyclohex-2-en-1-one, that is less sterically con-
gested than the 3-methyl derivative, was taken as model
substrate for an in-depth study of the catalytic ability of 1.

2.3. Operando high pressure NMR experiments

In an attempt of gaining information on the stability of
the precursor 1 as well as intercepting organometallic spe-
cies that might be involved in the hydrogenation of cyclo-
hex-2-en-1-one catalyzed by this complex, an operando

study was carried out by means of high-pressure (HP)
NMR spectroscopy performed in a 10 mm-OD sapphire
tube. A sequence of 31P{1H} NMR spectra acquired in
C6D6 during a catalytic reaction is presented in Fig. 2.

The 31P{1H} NMR spectrum of the precursor (Fig. 2,
trace a) showed the characteristic AB pattern of 1 [2a].
Substrate addition, followed by pressurization with
25 bar of H2 did not change the spectrum (trace b). On
heating this solution to 60 �C, several ruthenium hydride
complexes were formed (trace c), among which we could
identify, by comparison with authentic specimens, the
monohydride RuH(CO)2(OAc)(PnBu3)(PPh3) (2) [2b], the
dihydride RuH2(CO)2(PnBu3)(PPh3) (3) [2b] and the
homodiphosphine dihydrides RuH2(CO)2(PnBu3)2 (4) [4a]
and RuH2(CO)2(PPh3)2 (5) [4b] in a 3.0:22.0:1.0:7.0 ratio,
respectively. A significant amount of the homodiphosphine
complex Ru(CO)2(OAc)2(PnBu3)2 (6) [4c] was also formed.
A 1H NMR spectrum acquired just after the last 31P{1H}
NMR spectrum showed the formation of cyclohex-2-en-
1-ol.

On heating the reaction mixture at 60 �C for 3 h, the
31P{1H} NMR pattern did not appreciably change (trace
d). The signals of the hydride species were observed also
upon cooling down the sapphire tube to room temperature
(trace e). A 1H NMR spectrum acquired under the condi-
tions of the 31P{1H} NMR spectrum shown in trace d of
Fig. 2 confirmed the formation of these hydride complexes
(Fig. 3).

The NMR picture of the present catalytic system is con-
sistent with the slow conversion of the precursor 1 into cat-
alytically active species. Indeed, the most abundant species
under catalytic conditions, even after 3 h at 60 �C (trace d),
was still the precursor 1. Notably, the organic product



Table 3
Hydrogenation of different a,b-unsaturated ketones catalyzed by 1a

Substrate Conversion (%) Selectivity (%)

A B C

(a) 33.1 6.6 90.3 3.1
(a)b 60.5 5.2 85.1 9.7
(b) 19.9 12.0 87.7 0.3
(c) 34.8 32.9 60.6 6.5
(d) 8.4 6.3 91.0 2.7
(d)b 14.2 5.8 90.7 3.5
(e) 9.8 14.8 74.7 10.5

a Reaction conditions: 1, 0.015 mmol; cyclohex-2-en-1-one, 1.50 mmol;
solvent, toluene (4 ml); reaction time, 3 h; temperature, 60 �C; p(H2),
25 bar at 20 �C.

b Reaction time, 24 h. A, saturated ketone; B, unsaturated alcohol; C,
saturated alcohol.
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composition of the HP-NMR experiment was comparable
to that obtained in batch conditions with catalyst 1 (Table
3).

The substitution of 1 with the monohydride 2, generated
by treatment of the dihydride 3 with 1 equiv. of HOAc (see
Section 4) [1], in an HP-NMR experiment of cyclohex-2-
en-1-one hydrogenation (60 �C, 25 bar H2) showed the fast
transformation of 2 into the corresponding dihydride (3)
(Scheme 2) as well as a lower chemoselectivity in allylic
alcohol (vide infra).
Fig. 2. Selected sequence of 31P{1H} HP-NMR spectra for a catalytic reaction
after addition of cyclohex-2-en-1-one and pressurization with 25 bar of H2 at ro
spectrum at 60 �C (trace d); after cooling to room temperature (trace e).
2.4. Influence of different reaction parameters on the

hydrogenation of cyclohex-2-en-1-one catalyzed by 1

Tables 4 and 5 report data relative to both conversion
and chemoselectivity of cyclohex-2-en-1-one hydrogena-
tion by 1 as a function of the H2 pressure and of the reac-
tion temperature, respectively. A reaction temperature of
60 �C and a hydrogen pressure ranging from 5 to 25 bar
represented an optimum compromise between an excellent
chemoselectivity and an acceptable conversion. In fact,
more drastic reaction conditions, though increasing the
conversion, resulted in a lower chemoselectivity. Based
on a previous study on the hydrogenation of alkenes and
ketones by 1 [1], the negative influence of higher H2 pres-
sures and temperatures can be rationalized in terms of an
increased concentration of the dihydride complex RuH2-
(CO)2(PnBu3)(PPh3) (3), which is a selective catalyst for
the hydrogenation of the C@C bond (Scheme 2) [1].

2.5. Hydrogenation of cyclohex-2-en-1-one by different

ruthenium(II) pre-catalysts

As shown by the HP-NMR experiments, the plain
hydrogenation of 1 gives 2 and 3 as major products
together with the bis(OAc) complexes Ru(CO)2(OAc)2-
(PnBu3)2 (6) and Ru(CO)2(OAc)2(PPh3)2 (7) and their
carried out in C6D6 with 1. Solution of 1 at room temperature (trace a);
om temperature (trace b); after heating to 60 �C (trace c); after 3 h at 60 �C,



Fig. 3. 1H NMR spectrum of the Ru–H region, acquired under the same conditions as in the 31P{1H} NMR spectrum shown in Fig. 2, trace d.
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corresponding dihydrides 4 and 5 [1,2,4]. Just to have an
idea of the possible contribution of these species to the
catalysis outcome using 1 as catalyst precursor, each com-
plex was synthesized [2,4,7] and independently employed to
catalyze the hydrogenation of cyclohex-2-en-1-one. The
results obtained are reported in Table 6. Some reactions
with mono- and dihydrides were carried out by adding 1
or 2 equiv. of acetic acid in an attempt of mimicking the
catalytic mixtures where this acid is formed by reaction
of the bis(OAc) precursor with H2 (Scheme 2).

A perusal of the results reported in Table 6 shows that
the homodiphosphine complexes 6 and 7 are scarcely active
and chemoselective, which reflects the importance of
Table 4
Cyclohex-2-en-1-one hydrogenation by 1: Dependence of the conversion
and chemoselectivity on the H2 pressurea

p(H2) (bar) Conversion (%) Selectivity (%)

A B C

5 21.1 3.6 95.3 1.1
5b 63.5 10.6 82.6 6.8

10 28.0 4.5 93.5 2.0
25 33.1 6.6 90.3 3.1
25b 60.5 5.2 85.1 9.7
50 38.2 5.9 87.6 6.5

a Reaction conditions: 1, 0.015 mmol; cyclohex-2-en-1-one, 1.50 mmol;
solvent, toluene (4 ml); reaction time, 3 h; reaction temperature, 60 �C;
p(H2), hydrogen pressures at 20 �C.

b Reaction time, 24 h. A, saturated ketone; B, unsaturated alcohol; C,
saturated alcohol.
phosphine unfastening from the precursor for the activa-
tion of both H2 and substrate [1,2,4]. Rather low substrate
conversion was also achieved with the corresponding dihy-
drides 4 and 5 in the presence of acid, which, by the way,
are more selective for the hydrogenation of the C@C bond
[1].

Either in the presence or in the absence of added acid,
the monohydride 2 was much less active than the
bis(OAc) precursor 1. This result can be accounted for
by the fact that 2 is a direct precursor to 3 (Scheme 2)
which, besides being a scarce catalyst, is better suited
for the hydrogenation of the C@C double bond. The
opposite chemoselectivity of the mono- and dihydride spe-
cies is clearly shown by the fact that the addition of
1 equiv. of acid to a solution of 3 shifts the hydrogenation
selectivity from the C@C group (>95%) to the C@O
group (>74%).
Table 5
Cyclohex-2-en-1-one hydrogenation by 1: Dependence of the conversion
and chemoselectivity on the temperaturea

T (�C) Conversion (%) Selectivity (%)

A B C

50 11.6 3.7 95.4 0.9
60 21.1 3.6 95.3 1.1
70 28.2 8.1 89.3 2.6

a Reaction conditions: 1, 0.015 mmol; cyclohex-2-en-1-one, 1.50 mmol;
solvent, toluene (4 ml); reaction time, 3 h; reaction temperature, 60 �C;
p(H2), 5 bar at 20 �C. A, saturated ketone; B, unsaturated alcohol; C,
saturated alcohol.



Table 6
Hydrogenation of cyclohex-2-en-1-one catalyzed by different ruthe-
nium(II) pre-catalystsa

Catalyst CH3COOH (equiv.) Conversion (%) Selectivity (%)

A B C

1 – 33.1 6.6 90.3 3.1
6 – 5.1 23.3 73.5 3.2
7 – 1.2 52.0 29.9 18.1
2 – 16.6 19.6 75.6 4.8
2 1 14.9 18.9 76.8 4.3
3 – 2.7 95.7 0.0 4.3
3 1 13.4 20.8 74.6 4.6
3 2 15.8 20.0 74.8 5.2
4 2 16.0 61.3 30.5 8.2
5 2 1.3 74.5 9.8 15.7

a Reaction conditions: precatalyst, 0.015 mmol; cyclohex-2-en-1-one,
1.50 mmol; solvent, toluene (4 mL); reaction time, 3 h; reaction tempera-
ture, 60 �C; p(H2), 25 bar at 20 �C. A, saturated ketone; B, unsaturated
alcohol; C, saturated alcohol.

Table 7
Effect of the acetic acid concentration and of added PPh3 on the
hydrogenation of cyclohex-2-en-1-one by 1a

Added reagent (equiv) Conversion (%) Selectivity (%)

A B C

– 33.1 6.6 90.3 3.1
HOAc (2) 25.0 3.9 93.1 3.0
HOAc (31) 16.9 5.6 93.1 1.3
PPh3(1) 4.1 10.4 79.1 10.5

a Reaction conditions: 1, 0.015 mmol; cyclohex-2-en-1-one, 1.50 mmol;
solvent, toluene (4 ml); reaction time, 3 h; reaction temperature, 60 �C;
p(H2), 25 bar at 20 �C. A, saturated ketone; B, unsaturated alcohol; C,
saturated alcohol.
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2.6. Influence of the addition of either acetic acid or PPh3 on

the hydrogenation of cyclohex-2-en-1-one catalyzed by 1

Since the hydrogenation of 1 produces free HOAc, that
remains in the catalytic mixture, some reactions were per-
formed in the presence of this acid. The results obtained
are reported in Table 7. The conversion of cyclohex-2-en-
1-one decreased remarkably just by adding two equiv. of
acid and decreased further on to 16.9% by addition of a
large excess of acid (31 equiv.). In contrast, the chemoselec-
tivity was not affected significantly by addition of acid. The
observed trend is in line with the increasing stability of the
bis(OAc) complex 1 vs. the monohydride 2 in the presence
of added acid (see Scheme 2).

A much more remarkable effect on the catalytic activity
was observed by addition of 1 equiv. of PPh3 to the catalytic
mixture. Indeed, the conversion dropped from 33.1% to
4.1% and the selectivity in allylic alcohol decreased from
90.3% to 79.1%. These results are in line with previous
results for the hydrogenation of alkenes and ketones by 1

[1], and are consistent with the occurrence of the equilibria
shown in Schemes 1 and 2 according to which PPh3 unfas-
tening is mandatory for H2 activation as well as for gener-
ating a free coordination site to accommodate the substrate.
3. Conclusions

The heterodiphosphine complex Ru(CO)2(OAc)2-
(PnBu3)(PPh3) is capable of generating an effective chemo-
selective catalyst for the hydrogenation of a,b-unsaturated
ketones to allylic alcohols under relatively mild experimen-
tal conditions.

Batch catalytic reactions and operando high-pressure
NMR experiments have contributed to establish that the
hydrogenation of the C@O group is performed by the
heterodiphosphine monohydride RuH(CO)2(OAc)(PnBu3)
(PPh3) generated in situ by hydrogenation of the bis(OAc)
precursor. However, PPh3 unfastening from this monohy-
dride complex is an essential condition for the occurrence
of catalytic activity.

A drawback of the present ruthenium(II) catalyst is rep-
resented by the generally low conversions as only a fraction
of the ruthenium is effectively used in the catalysis cycle.
For this reason, any practical application of trans-heterodi-
phosphine ruthenium(II) complexes in catalytic hydrogena-
tion reactions will require to modify the molecular
structure of the precursors so as to have a large concentra-
tion of catalytically active ruthenium species. Preliminary
results with increasing concentrations of Ru(CO)2(OAc)2-
(PnBu3)(PPh3) do not seem to provide a clue to solve
the problem of the low productivity as even by increasing
the catalyst amount from 0.015 to 0.045 mmol only a
4% increase in the conversion to allylic alcohol was
achieved.
4. Experimental

4.1. Materials

All non-catalytic reactions and manipulations were per-
formed under dry nitrogen in Schlenk tubes. The ruthe-
nium(II) complexes 1, 2, 3, 4, 5, 6 and 7 were synthesized
following reported procedures [2,4,7].

Commercial methyl vinyl ketone (99%), BZA (99%),
PPh3 (98%), C6D6 (99.6%) and trifluoroacetic acid were
used without further purification. Cyclohex-2-en-1-one
(P95%), 3-methyl-cyclohex-2-en-1-one (98%) and 2-
cyclopenten-1-one (98%) were purified by distillation under
vacuum and stored under nitrogen. Toluene was purified
and stored using a standard procedure. Acetic acid was dis-
tilled under nitrogen prior to use (b.p. 118 �C).

4.2. Instruments

IR spectra were recorded on a FT-IR Perkin–Elmer
Spectrum BX model, using the Spectrum v. 3.02.02 pro-
gram. The solutions were analyzed using CaF2 cells having
0.1 mm path.

1H NMR spectra were recorded at 399.92 MHz on a
Varian Mercury 400, using the solvent residual peak as ref-
erence. 13C{1H} NMR spectra were collected at
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100.57 MHz on a Varian Mercury 400, using solvent resid-
ual peak as reference. 31P{1H} NMR spectra were regis-
tered at 121.421 MHz on a Varian VXR 300, using
H3PO4 (85%) as external standard: downfield values were
taken as positive. All 13C{1H} and 31P{1H} NMR spectra
were acquired using a broad band decoupler.

High-pressure NMR experiments were performed on a
Bruker ACP 200 spectrometer operating at 200.13 and
81.01 MHz for 1H and 31P{1H} NMR, respectively. The
10 mm-o.d. sapphire tube was purchased from Saphikon,
Milford, NH, while the titanium high-pressure charging
head was constructed at ICCOM-CNR (Firenze, Italy)
[8]. Caution: Since high gas pressures are involved, safety

precautions must be taken at all stages of studies involving
high-pressure NMR tubes.

The reaction mixtures were analyzed with a Shimadzu
GC-14A gas chromatograph equipped with a packed col-
umn (length 2 m, diameter, 3.17 mm) and a flame ioniza-
tion detector. A column of the type FFAP (‘free fatty
acids phase’ supported on Chromosorb G AW-DMCS
5%) was used to analyze the hydrogenation products of
the a,b-unsaturated ketones studied in this work, except
for methyl vinyl ketone for which a PPG column (Polypro-
pylenglicol LB-550-X 15% supported on Chromosorb W)
was employed.

GC-MS spectra were collected using a Shimadzu GC-
17A QP5050A instrument.

Elemental analyses were performed with a Perkin–Elmer
2400 Series II CHNS/O analyzer.

4.3. Catalytic reactions

4.3.1. General procedure

Typically, in a glass vial placed in a stainless-steel
autoclave, previously evacuated by a vacuum pump, were
introduced 4.0 ml of a toluene solution containing the cat-
alytic precursor (1.5 · 10�5 mol) and the substrate (1.5 ·
10�3 mol) under dry nitrogen. The autoclave was then pres-
surized at room temperature with H2, placed in a thermo-
static oil bath at the desired temperature (±1 �C) and
rocked for the desired time. At the end of the reaction,
the autoclave was cooled to room temperature and the gas-
eous contents were vented off. The product composition of
the solutions was analyzed by GC-MS and by GC using
pure compounds as standards.

4.4. Operando high-pressure NMR studies in C6D6

4.4.1. High pressure NMR study with

Ru(CO)2(OAc)2(PnBu3)(PPh3) with or without substrate

Complex 1 (15.5 mg, 0.025 mmol) was dissolved in a
Schlenk tube containing degassed C6D6 (1.8 ml). The
resulting solution was then transferred under nitrogen into
a sapphire NMR tube, which was introduced at room tem-
perature into the NMR probe. 31P{1H} and 1H NMR spec-
tra were acquired at room temperature. Then the sapphire
tube was removed from the NMR probe-head and cyclo-
hex-2-en-1-one (72.6 ll, 0.75 mmol) was added, followed
by pressurization with 25 bar of H2 at room temperature.
The tube was placed into the NMR probe and 31P{1H}
and 1H NMR spectra were acquired in 10 �C steps from
room temperature to 60 �C. The tube was kept for 3 h at
60 �C, before cooling it again to room temperature.

An analogous study in the absence of substrate was car-
ried out applying the same experimental conditions.
4.4.2. High pressure NMR study with

RuH(CO)2(OAc)(PnBu3)(PPh3) in the presence of

substrate

The dihydride 3 (18.0 mg, 0.025 mmol) was dissolved
in a Schlenk tube containing degassed C6D6 (1.8 ml).
To this solution was added HOAc (1.4 ll, 0.025 mmol)
and the obtained solution was stirred for 2 days at room
temperature. The solution was transferred under nitrogen
into a 10 mm-OD sapphire NMR tube. 31P{1H} and 1H
NMR spectra showed the complete conversion of 3 into
the monohydride 2 already at room temperature. To this
solution were sequentially added under nitrogen HOAc
(1.4 ll, 0.025 mmol) and cyclohex-2-en-1-one (72.6 ll,
0.75 mmol). The sapphire tube was pressurized with H2

(20 bar) at room temperature and 31P{1H} and 1H
NMR spectra were acquired at the same temperature.
The NMR tube was then heated to 60� C and
maintained at this temperature for 20 min. During this
time 2 was transformed quantitatively into 3. The
NMR tube was cooled to room temperature and the
gas was released. A GC-MS analysis of the solution
showed the formation of the allylic alcohol (75%)
together with the saturated ketone (15%) and the satu-
rated alcohol (4%).
4.5. X-ray data collection and structure determination of

Ru(CO)2(OAc)2(PnBu3)(PPh3)

A suitable single crystal of 1 was analyzed with an Enraf
Nonius CAD4 automatic diffractometer with Mo Ka radi-
ation (graphite monochromator) at room temperature.
Unit cell parameters were determined from a least-squares
refinement of the setting angles of 25 carefully centred
reflections. Crystal data and data collection details are
given in Tables 1 and 2, respectively. Lorentz-polarization
and absorption corrections were applied [9a]. Atomic scat-
tering factors were taken from Ref. [9b] and an anomalous
dispersion correction, real and imaginary part, was applied
[9c]. The structure was solved by direct methods and
refined by full-matrix F2 refinement. Anisotropic thermal
parameters were assigned to all non-hydrogen atoms and
hydrogen atoms were introduced in their calculated posi-
tions applying a riding model with thermal parameters
20% larger than those of the respective carbon atoms. All
calculations were performed on a PC using the WINGX
package [9d] with SIR-97 [9e], SHELX-97 [9f] and ORTEP-3
[9g] programs.
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Appendix A. Supplementary material

CCDC 609254 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free
of charge via http://www.ccdc.cam.ac.uk/conts/retriev-
ing.html, or from the Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax:
(+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.jorganchem.
2007.02.006.
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